3.865 \(\int \frac {1}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=200 \[ -\frac {2 b \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 b \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \left (a^2-b^2\right ) \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \]

[Out]

-2*b*sin(d*x+c)/(a^2-b^2)/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x
+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/a/d/cos(d*x+c)^(1
/2)/(a+b*sec(d*x+c))^(1/2)+2*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^
(1/2)*(a/(a+b))^(1/2))*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/a/(a^2-b^2)/d/((b+a*cos(d*x+c))/(a+b))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.46, antiderivative size = 200, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {4264, 3843, 4035, 3856, 2655, 2653, 3858, 2663, 2661} \[ -\frac {2 b \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 b \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \left (a^2-b^2\right ) \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[Cos[c + d*x]]*(a + b*Sec[c + d*x])^(3/2)),x]

[Out]

(2*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(a*d*Sqrt[Cos[c + d*x]]*Sqrt[a +
b*Sec[c + d*x]]) + (2*b*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(a*
(a^2 - b^2)*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]) - (2*b*Sin[c + d*x])/((a^2 - b^2)*d*Sqrt[Cos[c + d*x]]*Sqrt[
a + b*Sec[c + d*x]])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3843

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(b*d*
Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dist[1/((m +
 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[b*d*(n - 1) + a*d*(m + 1)*Csc
[e + f*x] - b*d*(m + n + 1)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && Lt
Q[m, -1] && LtQ[0, n, 1] && IntegersQ[2*m, 2*n]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4035

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{(a+b \sec (c+d x))^{3/2}} \, dx\\ &=-\frac {2 b \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {b}{2}-\frac {1}{2} a \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{a^2-b^2}\\ &=-\frac {2 b \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{a}+\frac {\left (b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{a \left (a^2-b^2\right )}\\ &=-\frac {2 b \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\sqrt {b+a \cos (c+d x)} \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{a \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (b \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{a \left (a^2-b^2\right ) \sqrt {b+a \cos (c+d x)}}\\ &=-\frac {2 b \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\sqrt {\frac {b+a \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{a \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (b \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{a \left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}\\ &=\frac {2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 b \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{a \left (a^2-b^2\right ) d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}-\frac {2 b \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 7.80, size = 245, normalized size = 1.22 \[ \frac {2 \sqrt {\cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+b) \left (b (b-a) \tan \left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)}-i a (a+b) \sqrt {\sec (c+d x)+1} \sqrt {\frac {a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}} F\left (i \sinh ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )+i b (a+b) \sqrt {\sec (c+d x)+1} \sqrt {\frac {a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}} E\left (i \sinh ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )\right )}{a d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[Cos[c + d*x]]*(a + b*Sec[c + d*x])^(3/2)),x]

[Out]

(2*Sqrt[Cos[c + d*x]]*(b + a*Cos[c + d*x])*Sec[c + d*x]^(3/2)*(I*b*(a + b)*Sqrt[(b + a*Cos[c + d*x])/((a + b)*
(1 + Cos[c + d*x]))]*EllipticE[I*ArcSinh[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 + Sec[c + d*x]] - I*a*(a
+ b)*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[I*ArcSinh[Tan[(c + d*x)/2]], (-a + b)/(
a + b)]*Sqrt[1 + Sec[c + d*x]] + b*(-a + b)*Sqrt[Sec[c + d*x]]*Tan[(c + d*x)/2]))/(a*(a^2 - b^2)*d*(a + b*Sec[
c + d*x])^(3/2))

________________________________________________________________________________________

fricas [F]  time = 0.93, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b \sec \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{b^{2} \cos \left (d x + c\right ) \sec \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) \sec \left (d x + c\right ) + a^{2} \cos \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(d*x + c) + a)*sqrt(cos(d*x + c))/(b^2*cos(d*x + c)*sec(d*x + c)^2 + 2*a*b*cos(d*x + c)*sec
(d*x + c) + a^2*cos(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(1/((b*sec(d*x + c) + a)^(3/2)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

maple [B]  time = 1.41, size = 502, normalized size = 2.51 \[ \frac {2 \left (-\sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \sin \left (d x +c \right ) \EllipticF \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) a -\sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right ) b -\EllipticF \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) a \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-\sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) b \sin \left (d x +c \right )+\cos \left (d x +c \right ) \sqrt {\frac {a -b}{a +b}}\, b -\sqrt {\frac {a -b}{a +b}}\, b \right ) \left (\sqrt {\cos }\left (d x +c \right )\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\cos \left (d x +c \right )}}}{d \left (b +a \cos \left (d x +c \right )\right ) \sin \left (d x +c \right ) a \left (a +b \right ) \sqrt {\frac {a -b}{a +b}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(3/2),x)

[Out]

2/d*(-((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)*sin(d*x+c)*EllipticF((
-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a-((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^
(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*
cos(d*x+c)*sin(d*x+c)*b-EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*((b+a
*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-((b+a*cos(d*x+c))/(1+cos(d*x+c))/
(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^
(1/2))*b*sin(d*x+c)+cos(d*x+c)*((a-b)/(a+b))^(1/2)*b-((a-b)/(a+b))^(1/2)*b)*cos(d*x+c)^(1/2)*((b+a*cos(d*x+c))
/cos(d*x+c))^(1/2)/(b+a*cos(d*x+c))/sin(d*x+c)/a/(a+b)/((a-b)/(a+b))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((b*sec(d*x + c) + a)^(3/2)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^(1/2)*(a + b/cos(c + d*x))^(3/2)),x)

[Out]

int(1/(cos(c + d*x)^(1/2)*(a + b/cos(c + d*x))^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}} \sqrt {\cos {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)**(1/2)/(a+b*sec(d*x+c))**(3/2),x)

[Out]

Integral(1/((a + b*sec(c + d*x))**(3/2)*sqrt(cos(c + d*x))), x)

________________________________________________________________________________________